1 ... 42 43 44 45 46 47 48 49 ... 74

The platon crystallographic package - səhifə 46

səhifə46/74
tarix04.12.2017
ölçüsü5.01 Kb.

Terminate parameter entry and start flipping.
 

1.4.32 – Analysis-of-Variance – SubMenu #0


1.4.32.1 – NorProbPlot


A Normal Probability Plot (Abrahams & Keve, 1971) of (Fobs
2
 – Fcalc
2
) / σ(Fobs
2
) is 
shown on the display. Expected is an almost linear curve with correlation coefficient, 
intercept and slope about 1.0, 0.0 and 1.0 respectively. Deviations may indicate improper 
weighting and systematic errors.

1.4.32.15 – Scatter  Plot


A linear plot of Fobs
2
 versus Fcalc
2
 is created showing possible outliers.

1.4.32.16 – LogLog Plot 


A Log(Fobs
2
) versus Log(Fcalc
2
) plot is created showing possible outliers.

1.4.32.17 – StandardDev 


A one sigma bar is added to Fobs
2
.

1.4.32.25 – END 


Exit from Analysis of Variance routine.

Chapter 2 – The PLATON Tool


PLATON development as a molecular geometry tool started around 1980 as a non-menu 
driven program. Instructions to the program were at that time entered interactively via the 
keyboard. The current PLATON version translates mouse clicks on the menu into keyboard 
instructions. Keyboard instructions can still be entered at the prompt on the PLATON menu. 
Some of the less used instructions and options are available only as keyboard instructions. 
This chapter details all the available instructions. The original non-menu mode is available 
by invoking PLATON as '

platon -o'

.
  
This chapter also details the algorithms and notions 
used.

2.1 – Introductory  Example


 


 


The following example, assumed to run in a terminal window, of the structure of SUCROSE 
(neutron data) provides an introduction to the use of this program and its potential. The 
structural parameters are assumed to reside in a free format disk file named 

sucrose.spf

 for 
which the free format contents are listed in part below: 
TITL SUCROSE (ACTA CRYST. (1973),B29,790-797)
CELL 1.5418 10.8633 8.7050 7.7585 90 102.945 90 
CESD 0.0005 0.0004 0.0004 0 0.006 0 
SPGR P21
ATOM C1 0.29961 0.35792 0.48487 0.00008 0.00000 0.00012 
BIJ C1 0.00274 .00376 .00584 .00004 .00094 .00006 
SBIJ C1 .00006 .00009 .00012 .00009 .00007 .00006
ATOM C2 0.31253 0.47474 0.63600 0.00009 0.00015 0.00012
BIJ C2 .00304 .00498 .00641 -.00063 .00073 -.00043 
SBIJ C2 .00006 .00010 .00013 .00009 .00007 .00007 
ATOM C3 0.28545 0.63673 0.56447 0.00009 0.00015 0.00013 
BIJ C3 .00321 .00437 .00965 -.00071 .00196 -.00017 
SBIJ C3 .00007 .00010 .00015 .00010 .00008 .00007 
ATOM C4 0.37404 0.67095 0.44198 0.00010 0.00015 0.00014 
BIJ C4 .00400 .00403 .01003 .00006 .00243 -.00021 
SBIJ C4 .00007 .00010 .00015 .00011 .00009 .00007 
etc. etc. 
ATOM H601 .34766 .27804 .16026 .00029 .00037 .00035
BIJ H601 .00909 .01261 .01234 -.00197 .00287 -.00210
SBIJ H601 .00026 .00039 .00040 .00032 .00027 .00026
A PLATON calculation may be invoked for this data set by entering the terminal command 

platon -o sucrose.spf

.  This will load the data set 

sucrose.spf

 and, since this file does not 
contain an END instruction at the end of the file, the program comes back, after reaching the 
end-of-file, with the prompt >> to receive more data and/or instructions via the keyboard. A 
default calculation of the intra-molecular geometry may now be invoked with the instruction 

CALC INTRA

. The result of this calculation is written to a disk file (in this case 

sucrose.lis


) along with some information as terminal window output. An analysis of short inter-
molecular contacts can be performed with a subsequent 

CALC INTER

 instruction. The 
analysis may be completed with a 

CALC COORDN

 instruction that gives a listing of all 
bonds and angles about all atoms (excluding C and H) involving atoms within a 3.6 

Angstrom coordination sphere. A default  anisotropic displacement ellipsoid plot 
(commonly called ORTEP) is obtained by entering  

PLOT ADP

. The default plot 
orientation can be rotated over 45 degrees about the vertical Y-axis by entering the 
instruction 

VIEW YROT 45 

in the terminal window. This instruction takes effect with a 
subsequently entered 

PLOT

 instruction. The session may be closed by twice entering the 
instruction 

END 

in the terminal window. All instruction should be entered in this non-menu 
mode via the terminal window when invoked with the 

-o

 flag,. A full list of instructions is 
given in 

section 2.5

.

2.2 – On How it Works


This section on the program internals should provide a framework to understand the impact 
of the available instructions. The input atomic coordinates (x, y, z) are with reference to 
user-defined axes (

a

b

c

), which will usually be either crystallographic unit cell axes or an 
arbitrary orthogonal set; these coordinates are input as fractions of the unit cell edges or as 
Angstrom units (in the latter case they are converted and stored as fractions of dummy cell 
edges). A second, orthogonal system (A, B, C) with coordinates (XO, YO, ZO) in Angstrom 
units is set up internally (see J.D. Dunitz, X-Ray analysis and structure of Organic 
molecules, p236): A is a unit vector along 

a

, B is a unit vector normal to 

a

 in the 

ab

-plane, 
and C is normal to A and B. B will coincide with 

b

 in monoclinic cells in the b-setting. If the 
input axes are orthogonal, the two sets of axes 

a

,

b

,

c

 and A,B,C are coincident. The third 
system is the plotting coordinate system in cm: XP across the picture from left to right, YP 
up the picture from bottom to top and ZP out of the paper. All these axial sets are right-
handed and absolute configuration is preserved in all rotations. 
As atoms are input to the program, they are stored in the x,y,z and XO,YO,ZO axes systems. 
Each atom also has additional information stored for it such as standard uncertainties, 
displacement parameters, a name (the embedded element type is used by default to set 
various radii to be used during the subsequent calculations) and various bit flags such as the 
inclusion bit. Coordinate data are checked for duplications on input and, if so, rejected. The 
atom list is sorted on the basis of the implicit information on atom type in the label (unless 
overruled). Atom labels not conforming to the required format are renamed with a # added 
for internal use and listed with their original label where possible. 
A CALC instruction generally initiates a distance search on the basis of internal or user 
supplied covalent radii. In the INTRA mode this results in the setup of an array that stores 
per atom all connections that are found. This list is used subsequently by the geometry 
listing routine that tabulates all unique bond distances, bond angles and torsion angles. 
Simultaneously with the setup of the connectivity array all atoms are transformed (when 
necessary, unless overruled) to obtain a connected set. In addition, in the case that the 
molecule lies on a special position, the primary coordinate list is expanded with additional 
symmetry generated atoms to allow the handling of the geometry of the complete molecule. 
Care is taken, unless overruled, that all connected species have their center of gravity within 
the bounds of the unit cell.

2.3 - Unit Cell Transformation


PLATON can be used to transform CELL, LATT, SYMM, SPGR, Coordinate and 
Displacement Parameter data according to a specified transformation matrix. 
The general format of the transformation instruction line is: 

:

afs
afs -> Meningoensefalit, meningoensefalit
afs -> Nb deze bovenstaande tekst wel weghalen!
afs -> Allergen Checklist for Food Suppliers or Manufacturers


Dostları ilə paylaş:

©2018 Учебные документы
Рады что Вы стали частью нашего образовательного сообщества.
?


the-schools-white-paper---33.html

the-schools-white-paper---38.html

the-schools-white-paper---42.html

the-schools-white-paper---47.html

the-schools-white-paper---51.html